Minimum Leaf Out-Branching Problems
نویسندگان
چکیده
Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NP-hard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every value of the parameter, but the third one is fixedparameter tractable (FPT). The FPT parametrization is as follows: given a digraph D of order n and a positive integral parameter k, check whether D contains an out-branching with at most n− k leaves (and find such an out-branching if it exists). We find a problem kernel of order O(k · 16) and construct an algorithm of running time O(2 log k) + n log n), which is an ‘additive’ FPT algorithm.
منابع مشابه
Minimum leaf out-branching and related problems
Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NPhard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every val...
متن کاملParameterized Minimum Leaf Out-Branching Problems
Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We describe three parameterizations of MinLOB and prove that two of them are NP-complete for every value of the parameter, but the third one is fixed-parameter tractable (FPT). The FPT parametrization is as...
متن کاملBetter Algorithms and Bounds for Directed Maximum Leaf Problems
The Directed Maximum Leaf Out-Branching problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we improve known parameterized algorithms and combinatorial bounds on the number of leaves in out-branchings. We show that – every strongly connected digraph D of order n with minimum indegree at least 3 has an ou...
متن کاملClique-width: When Hard Does Not Mean Impossible
In recent years, the parameterized complexity approach has lead to the introduction of many new algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently, rank-width. However, despite intensive work on the subject, there still exist well-established hard problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are known. Our a...
متن کاملOn Complexity of Minimum Leaf Out-branching Problem
Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. Gutin, Razgon and Kim (2008) proved that MinLOB is polynomial time solvable for acyclic digraphs which are exactly the digraphs of directed path-width (DAG-width, directed tree-width, respectively) 0. We in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008